
J Stat Phys (2010) 141: 638–660
DOI 10.1007/s10955-010-0067-9

Ising Models on Power-Law Random Graphs

Sander Dommers · Cristian Giardinà ·
Remco van der Hofstad

Received: 27 May 2010 / Accepted: 28 September 2010 / Published online: 13 October 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract We study a ferromagnetic Ising model on random graphs with a power-law degree
distribution and compute the thermodynamic limit of the pressure when the mean degree is
finite (degree exponent τ > 2), for which the random graph has a tree-like structure. For this,
we closely follow the analysis by Dembo and Montanari (Ann. Appl. Probab. 20(2):565–
592, 2010) which assumes finite variance degrees (τ > 3), adapting it when necessary and
also simplifying it when possible. Our results also apply in cases where the degree distribu-
tion does not obey a power law.

We further identify the thermodynamic limits of various physical quantities, such as the
magnetization and the internal energy.

Keywords Random graphs · Power-law degree distribution · Ising model ·
Thermodynamic limit of pressure

1 Introduction and Results

In this article we study the behavior of the Ising model on complex networks. There are
many real-world examples of complex networks. In [18], Newman divided such networks
into four categories: social, information, technological and biological networks. There has
been much interest in the functionality of such networks in recent years [1, 18, 22]. The
Ising model is a paradigm model in statistical physics for cooperative behavior [19, 20].
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De Sanctis and Guerra studied this model on Erdős-Rényi random graphs in the high
and zero temperature regime [21]. In [7], Dembo and Montanari study a ferromagnetic Ising
model on locally tree-like graphs, where they assume that the degree distribution of the
graph has finite variance. The Ising model on the k-regular graph where there is no external
magnetic field is studied in more detail in [17]. In this paper, the Gibbs measures are studied
and it is proved that they converge to a symmetric linear combination of the plus and the
minus Gibbs measure, while other Gibbs measures (of which there are uncountably many)
are not seen.

Many real-life networks are reported to have an infinite variance degree distribution (see
e.g. [18]) and, therefore, it is interesting to generalize the analysis of the Ising model on
random graphs to this setting. In this article we shall extend and simplify the analysis in [7]
to the case where the variances of the degrees are infinite, but their means remain finite. In
particular, we shall prove that the explicit expression for the pressure found in [7] remains
valid in the case of infinite variance degrees.

This research fits into a general effort to study the relation of the topology of networks
and the behavior of processes on them. An overview of results by physicists can for example
be found in [10]. Also mathematically rigorous results for processes on power-law random
graphs were published recently, for example for the contact process [6] and first passage
percolation [4].

In this section we will first define the model and then state our main results. Furthermore
we will discuss these results and give an overview of the proof. The remainder of the proof
can be found in the subsequent sections.

1.1 Model Definition

We start by defining Ising models on finite graphs. Consider a random graph sequence
{Gn}n≥1, where Gn = (Vn,En), with vertex set Vn = [n] ≡ {1, . . . , n} and some random
edge set En. To each vertex i ∈ [n] we assign an Ising spin σi = ±1. A configuration of
spins is denoted by σ = {σi : i ∈ [n]}. The Ising model on Gn is then defined by the Boltz-
mann distribution

μn(σ) = 1

Zn(β,B)
exp

⎧
⎨

⎩
β

∑

(i,j)∈En

σiσj +
∑

i∈[n]
Biσi

⎫
⎬

⎭
. (1.1)

Here, β ≥ 0 is the inverse temperature and B = {Bi : i ∈ [n]} ∈ R
n is the vector of external

magnetic fields. We will write B instead of B for a uniform external field, i.e., Bi = B for
all i ∈ [n]. The partition function Zn(β,B) is the normalization factor:

Zn(β,B) =
∑

σ∈{−1,+1}n
exp

⎧
⎨

⎩
β

∑

(i,j)∈En

σiσj +
∑

i∈[n]
Biσi

⎫
⎬

⎭
. (1.2)

We let 〈·〉μ denote the expectation with respect to the Ising measure μ, i.e., for every
bounded function f : {−1,+1}n → R,

〈
f (σ)

〉

μn
=

∑

σ∈{−1,+1}n
f (σ )μn(σ ). (1.3)

The main quantity we shall study is the pressure per particle, which is defined as

ψn(β,B) = 1

n
logZn(β,B), (1.4)
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in the thermodynamic limit of n → ∞.
We shall assume that the graph sequence {Gn}n≥1 is locally like a homogeneous random

tree, uniformly sparse and has a degree distribution with strongly finite mean. We make these
assumptions precise below, but we shall first introduce some notation.

For a probability distribution over the non-negative integers P = {Pk : k ≥ 0} we define
its size-biased law ρ = {ρk : k ≥ 0} by

ρk = (k + 1)Pk+1

P
, (1.5)

where P = ∑
k≥0 kPk is the expected value of P . Similarly, we write ρ = ∑

k≥0 kρk for the
expected value of ρ. The random rooted tree T (P,ρ, �) is a branching process with � gen-
erations, where the root offspring has distribution P and the vertices in each next generation
have offsprings that are independent and identically distributed (i.i.d.) with distribution ρ.
We write P for the law of T (P,ρ,∞) and write T (ρ, �) when the offspring at the root also
has distribution ρ.

We write that an event A holds almost surely (a.s.) if P[A] = 1. The ball of radius r

around vertex i, Bi(r), is defined as the graph induced by the vertices at graph distance at
most r from vertex i. For two rooted trees T1 and T2, we write that T1 	 T2, when there
exists a bijective map from the vertices of T1 to those of T2 that preserves the adjacency
relations.

Definition 1.1 (Local convergence to homogeneous trees) Let Pn denote the law induced
on the ball Bi(t) in Gn centered at a uniformly chosen vertex i ∈ [n]. We say that the graph
sequence {Gn}n≥1 is locally tree-like with asymptotic degree distribution P when, for any
rooted tree T with t generations, we have that, a.s.,

lim
n→∞ Pn[Bi(t) 	 T ] = P[T (P,ρ, t) 	 T ]. (1.6)

Note that this implies that the degree of a uniformly chosen vertex of the graph has
asymptotic law P . In [7], it is assumed that the asymptotic degree distribution P has finite
variance. This is not a necessary condition and we shall prove that it is sufficient to assume
that the degree distribution has a finite (1 + ε)-th moment for some ε > 0:

Definition 1.2 (Strongly finite mean degree distribution) We say that the degree distribution
P has strongly finite mean when there exist constants τ > 2 and c > 0 such that

∞∑

i=k

Pi ≤ ck−(τ−1). (1.7)

For technical reasons, we will assume, without loss of generality, that τ ∈ (2,3) in the
rest of the paper. Note that all distributions P where

∞∑

i=k

Pi = ck−(τ−1)L(k), (1.8)

for c > 0, τ > 2 and some slowly varying function L(k), have strongly finite mean, because
by Potter’s theorem [11, Lemma 2, p. 277] any slowly varying function L(k) can be bounded
above and below by an arbitrary small power of k. Also distributions which have a lighter
tail than a power law, e.g. the Poisson distribution, have strongly finite mean.
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Definition 1.3 (Uniform sparsity) We say that the graph sequence {Gn}n≥1 is uniformly
sparse when, a.s.,

lim
�→∞

lim sup
n→∞

1

n

∑

i∈[n]
Di1{Di≥�} = 0, (1.9)

where Di is the degree of vertex i in Gn and 1A denotes the indicator of the event A.

An immediate consequence of the local convergence and the uniform sparsity condition
is, that, a.s.,

lim
n→∞

|En|
n

= lim
n→∞

1

2n

∑

i∈[n]

∞∑

k=1

k1{Di=k}

= 1

2
lim
�→∞

lim
n→∞

(
�−1∑

k=1

k

∑
i∈[n] 1{Di=k}

n
+ 1

n

∑

i∈[n]
Di1{Di≥�}

)

= 1

2
lim
�→∞

�−1∑

k=1

kPk = P/2 < ∞. (1.10)

1.2 Main Results

We first investigate the thermodynamic limit of the pressure:

Theorem 1.4 (Thermodynamic limit of the pressure) Assume that the random graph se-
quence {Gn}n≥1 is locally tree-like with asymptotic degree distribution P , where P has
strongly finite mean, and is uniformly sparse. Then, for all 0 ≤ β < ∞ and all B ∈ R, the
thermodynamic limit of the pressure exists, a.s., and equals

lim
n→∞ψn(β,B) = ϕ(β,B), (1.11)

where, for B < 0, ϕ(β,B) = ϕ(β,−B), ϕ(β,0) = limB↓0 ϕ(β,B) and, for B > 0,

ϕ(β,B) = P

2
log cosh(β) − P

2
E[log(1 + tanh(β) tanh(h1) tanh(h2))]

+ E

[

log

(

eB

L∏

i=1

{1 + tanh(β) tanh(hi)} + e−B

L∏

i=1

{1 − tanh(β) tanh(hi)}
)]

,

(1.12)

where

(i) L has distribution P ;
(ii) {hi}i≥1 are i.i.d. copies of the fixed point h∗ = h∗(β,B) of the distributional recursion

h(t+1) d= B +
Kt∑

i=1

atanh(tanh(β) tanh(h
(t)
i )), (1.13)

where h(0) ≡ B , {Kt }t≥1, are i.i.d. with distribution ρ and {h(t)
i }i≥1 are i.i.d. copies of

h(t) independent of Kt ;
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(iii) L and {hi}i≥1 are independent.

The quantity ϕ(β,B) can be seen as the infinite volume pressure of the Ising model on
the random Bethe lattice, where every vertex has degree distributed as P (cf. [3] where the
Ising model on the regular Bethe lattice is studied).

Various thermodynamic quantities can be computed by taking the proper derivative of
the function ϕ(β,B) as we shall show in the next theorem.

Theorem 1.5 (Thermodynamic quantities) Assume that the random graph sequence
{Gn}n≥1 is locally tree-like with asymptotic degree distribution P , where P has strongly
finite mean, and is uniformly sparse. Then, for all β ≥ 0 and B = 0, each of the following
statements holds a.s.:

(a) Magnetization. Let Mn(β,B) = 1
n

∑
i∈[n]〈σi〉μn be the magnetization per vertex. Then,

its thermodynamic limit exists and is given by

M(β,B) ≡ lim
n→∞Mn(β,B) = ∂

∂B
ϕ(β,B). (1.14)

(b) Internal energy. Let Un(β,B) = − 1
n

∑
(i,j)∈En

〈σiσj 〉μn be the internal energy per vertex.
Then, its thermodynamic limit exists and is given by

U(β,B) ≡ lim
n→∞Un(β,B) = − ∂

∂β
ϕ(β,B). (1.15)

(c) Susceptibility. Let χn(β,B) = 1
n

∑
i,j∈[n](〈σiσj 〉μn − 〈σi〉μn〈σj 〉μn) = ∂Mn

∂B
(β,B) be the

susceptibility. Then, its thermodynamic limit exists and is given by

χ(β,B) ≡ lim
n→∞χn(β,B) = ∂2

∂B2
ϕ(β,B). (1.16)

The limits above hold for β ≥ 0 and B = 0. From the physics literature (see e.g. [9, 16])
we expect that this model has a ferromagnetic phase transition at βc = atanh(1/ρ), i.e.,
the susceptibility becomes infinite at β = βc in B = 0. For β < βc the functions above are
continuous in B for all B and thus the limits above also hold in this regime.

Another physical quantity studied in the physics literature is the specific heat,

Cn(β,B) ≡ −β2 ∂Un

∂β
. (1.17)

Unfortunately, we were not able to prove that this converges to β2 ∂2

∂β2 ϕ(β,B), because we
do not have convexity or concavity of the internal energy in β . We expect, however, that this
limit also holds.

Taking the derivatives of Theorem 1.5 we can also give explicit expressions for the mag-
netization and internal energy which have a physical interpretation:

Corollary 1.6 (Explicit expressions for thermodynamic quantities) Assume that the graph
sequence {Gn}n≥1 is locally tree-like with asymptotic degree distribution P , where P has
strongly finite mean, and is uniformly sparse. Then, for all β ≥ 0 and B ∈ R, each of the
following statements holds a.s.:
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(a) Magnetization. Let νL+1 be the random Ising measure on a tree with L+ 1 vertices (one
root and L leaves), where L has distribution P , defined by

νL+1(σ ) = 1

ZL+1(β,h∗)
exp

{

β

L∑

i=1

σ0σi + Bσ0 +
L∑

i=1

hiσi

}

, (1.18)

where {hi}i≥1 are i.i.d. copies of h∗, independent of L. Then, the thermodynamic limit
of the magnetization per vertex is given by

M(β,B) = E

[〈
σ0

〉

νL+1

]
, (1.19)

where the expectation is taken over L and {hi}i≥1. More explicitly,

M(β,B) = E

[

tanh

(

B +
L∑

i=1

atanh(tanh(β) tanh(hi))

)]

. (1.20)

(b) Internal energy. Let ν ′
2 be the random Ising measure on one edge, defined by

ν ′
2(σ ) = 1

Z2(β,h1, h2)
exp {βσ1σ2 + h1σ1 + h2σ2} , (1.21)

where h1 and h2 are i.i.d. copies of h∗. Then the thermodynamic limit of the internal
energy per vertex is given by

U(β,B) = −P

2
E

[〈
σ1σ2

〉

ν′
2

]
, (1.22)

where the expectation is taken over h1 and h2. More explicitly,

U(β,B) = −P

2
E

[
tanh(β) + tanh(h1) tanh(h2)

1 + tanh(β) tanh(h1) tanh(h2)

]

. (1.23)

Note that the magnetization and internal energy are local observables, i.e., they are spin
or edge variables averaged out over the graph. This is not true for the susceptibility, which
is an average over pairs of spins, and hence we were not able to give an explicit expression
for this quantity.

1.3 Discussion

We study the Ising model on a random graph, which gives rise to a model with double
randomness. Still, in the thermodynamic limit, the pressure is essentially deterministic. This
is possible, because it suffices to study the Ising model on the local neighborhood of a
uniformly chosen vertex. This local neighborhood converges by our assumptions to the tree
T (P,ρ,∞), and it thus suffices to study the Ising model on this limiting object. An analysis
of this kind is therefore known as the objective method introduced by Aldous and Steele
in [2].

The assumption that the graph converges locally to a homogeneous tree holds in a wide
range of random graph models, among which the configuration model and the Erdős-Rényi
random graph, as we now explain.
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In the configuration model, a random graph Gn is constructed as follows. Let {Di}n
i=1 be

a sequence of i.i.d. random variables with a certain degree distribution P . Let vertex i ∈ [n]
be a vertex with Di half-edges, also called stubs, attached to it, i.e., vertex i has degree Di .
Let Ln = ∑n

i=1 Di be the total degree, which we assume to be even in order to be able to
construct a graph. When Ln is odd we will increase the degree of Dn by 1. For n large, this
will hardly change the results and we will therefore ignore this effect. Now connect one of
the half-edges uniformly at random to one of the remaining Ln − 1 half-edges. Repeat this
procedure until all half-edges have been connected.

Dembo and Montanari studied a slightly different version of the configuration model
in [8], where the degrees of the vertices are deterministic instead of random. They prove
that in that case, when the empirical degree distribution has finite mean, the graph sequence
is also locally tree-like and uniformly sparse. Their proof can easily be adapted to show that
this also holds for the above version of the configuration model using the strong law of large
numbers.

In [8], it was also shown that the Erdős-Rényi random graph is uniformly sparse and is
locally tree-like with an asymptotic degree distribution that is Poisson distributed (and note
that for a Poisson distribution P = ρ). Therefore, clearly, the Erdős-Rényi random graph
has a finite mean degree distribution.

That these results hold for a wide variety of random graph models is not a surprise. It
is believed that the behavior of networks shows a great universality. Distances in random
graph models, for example, also show a remarkably universal behavior. See, e.g., [14] for
an overview of results on distances in power-law random graphs. These distances mainly
depend on the power-law exponent and not on other details of the graph. Note, however,
that the results above only apply to graphs that converge locally to a homogeneous tree and
thus, for instance, not for many inhomogeneous random graphs studied in [5] where the
local structure is a multi-type Galton-Watson branching process instead. Certain parts of our
proof easily extend to this case.

In this paper we study smooth observables, we defer the investigation of the critical na-
ture to a later paper. There we will study the behavior around the critical value βc where
certain quantities (e.g. the susceptibility) have singularities. Of special interest is the critical
behavior when τ ∈ (2,3), where βc = 0, i.e., where the system is always in the ferromag-
netic regime for any finite temperature.

1.4 Overview of the Proof and Organization of the Paper

In this section, we give an overview of the proof of Theorem 1.4, and reduce it to the proofs
of Propositions 1.7, 1.8 and 1.9 below. Proposition 1.7 establishes that the recursive relation
that gives the field acting on the root of the infinite tree T (P,ρ,∞) is well-defined, in the
sense that the recursion admits a unique fixed point h∗. Proposition 1.8 is instrumental to
control the implicit dependence of the pressure of the random Bethe lattice ϕ(β,B) on the
inverse temperature β via the field h∗. This is used in Proposition 1.9 which proves that the
derivative of the pressure with respect to β , namely minus the internal energy, converges
in the thermodynamic limit to the derivative of ϕ(β,B). We also clearly indicate how our
proof deviates from that by Dembo and Montanari in [7].

We will first analyze the case where B > 0 and deal with B ≤ 0 later. We start by inves-
tigating the distributional recursion (1.13):

Proposition 1.7 (Tree recursion) Let B > 0 and let {Kt }t≥1 be i.i.d. according to some
distribution ρ and assume that K1 < ∞, a.s. Consider the sequence of random variables
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{h(t)}t≥0 defined by h(0) ≡ B and, for t ≥ 0, by (1.13). Then, the distributions of h(t) are
stochastically monotone and h(t) converges in distribution to the unique fixed point h∗ of the
recursion (1.13) that is supported on [0,∞).

We can now investigate the thermodynamic limit of the pressure. By the fundamental
theorem of calculus,

lim
n→∞ψn(β,B) = lim

n→∞

[

ψn(0,B) +
∫ β

0

∂

∂β ′ ψn(β
′,B)dβ ′

]

= lim
n→∞

[

ψn(0,B) +
∫ ε

0

∂

∂β ′ ψn(β
′,B)dβ ′ +

∫ β

ε

∂

∂β ′ ψn(β
′,B)dβ ′

]

,

(1.24)

for any 0 < ε < β . For all n ≥ 1, we have that

ψn(0,B) = log(2 cosh(B)) = ϕ(0,B), (1.25)

so this is also true for n → ∞.
By the uniform sparsity of {Gn}n≥1,

∣
∣
∣
∣

∂

∂β
ψn(β,B)

∣
∣
∣
∣ =

∣
∣
∣
∣
∣
∣

1

n

∑

(i,j)∈En

〈
σiσj

〉

μn

∣
∣
∣
∣
∣
∣
≤ |En|

n
≤ c, (1.26)

for some constant c. Thus, uniformly in n,
∣
∣
∣
∣

∫ ε

0

∂

∂β ′ ψn(β
′,B)dβ ′

∣
∣
∣
∣ ≤ cε. (1.27)

Using the boundedness of the derivative for β ′ ∈ [ε,β], we also have that

lim
n→∞

∫ β

ε

∂

∂β ′ ψn(β
′,B)dβ ′ =

∫ β

ε

lim
n→∞

∂

∂β ′ ψn(β
′,B)dβ ′. (1.28)

For β > 0, we will show that the partial derivative with respect to β of ψn(β,B) converges
to the partial derivative with respect to β of ϕ(β,B). For this, we need that we can in fact
ignore the dependence of h∗ on β when computing the latter derivative as we shall show
first:

Proposition 1.8 (Dependence of ϕ on (β,B) via h∗) Assume that the distribution P has
strongly finite mean. Fix B1,B2 > 0 and 0 < β1, β2 < ∞. Let h∗

1 and h∗
2 be the fixed points

of (1.13) for (β1,B1) and (β2,B2), respectively. Let ϕh∗(β,B) be defined as in (1.12) with
{hi}i≥1 replaced by i.i.d. copies of the specified h∗. Then,

(a) For B1 = B2, there exists a λ1 < ∞ such that

|ϕh∗
1
(β1,B1) − ϕh∗

2
(β1,B1)| ≤ λ1|β1 − β2|τ−1. (1.29)

(b) For β1 = β2, there exists a λ2 < ∞ such that

|ϕh∗
1
(β1,B1) − ϕh∗

2
(β1,B1)| ≤ λ2|B1 − B2|τ−1. (1.30)
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Note that this proposition only holds if τ ∈ (2,3). For τ > 3, the exponent τ − 1 can be
improved to 2, as is shown in [7], but this is not of importance to the proof. We need part (b)
of the proposition above later in the proof of Corollary 1.6.

Proposition 1.9 (Convergence of the internal energy) Assume that the graph sequence
{Gn}n≥1 is locally tree-like with asymptotic degree distribution P , where P has strongly
finite mean, and is uniformly sparse. Let β > 0. Then, a.s.,

lim
n→∞

∂

∂β
ψn(β,B) = ∂

∂β
ϕ(β,B), (1.31)

where ϕ(β,B) is given in (1.12).

By Proposition 1.9 and bounded convergence,

∫ β

ε

lim
n→∞

∂

∂β ′ ψn(β
′,B)dβ ′ =

∫ β

ε

∂

∂β ′ ϕ(β ′,B)dβ ′ = ϕ(β,B) − ϕ(ε,B), (1.32)

again by the fundamental theorem of calculus.
Observing that 0 ≤ tanh(h∗) ≤ 1, one can show that, by dominated convergence, ϕ(β,B)

is right-continuous in β = 0. Thus, letting ε ↓ 0,

lim
n→∞ψn(β,B) = lim

ε↓0
lim

n→∞

[

ψn(0,B) +
∫ ε

0

∂

∂β ′ ψn(β
′,B)dβ ′ +

∫ β

ε

∂

∂β ′ ψn(β
′,B)dβ ′

]

= ϕ(0,B) + lim
ε↓0

(ϕ(β,B) − ϕ(ε,B)) = ϕ(β,B), (1.33)

which completes the proof for B > 0.
The Ising model with B < 0 is equivalent to the case B > 0, because one can multiply

all spin variables {σi}i∈[n] and B with −1 without changing Boltzmann distribution (1.1).
Furthermore, note that,

∣
∣
∣
∣

∂

∂B
ψn(β,B)

∣
∣
∣
∣ =

∣
∣
∣
∣
∣

1

n

∑

i∈[n]
〈σi〉μn

∣
∣
∣
∣
∣
≤ 1, (1.34)

so that B �→ ψn(β,B) is uniformly Lipschitz continuous with Lipschitz constant one. There-
fore,

lim
n→∞ψn(β,0) = lim

n→∞ lim
B↓0

ψn(β,B) = lim
B↓0

lim
n→∞ψn(β,B) = lim

B↓0
ϕ(β,B). (1.35)

�
The proof given above follows the line of argument in [7], but in order to prove Propo-

sitions 1.7, 1.8 and 1.9 we have to make substantial changes to generalize the proof to the
infinite variance case.

To prove Proposition 1.7, we adapt the proof of Dembo and Montanari by taking the
actual forward degrees into account, instead of using Jensen’s inequality to replace them by
expected forward degrees, which are potentially infinite. This also makes a separate analysis
of nodes that have zero offspring superfluous, which considerably simplifies the analysis.

The proof of Proposition 1.8(a) is somewhat more elaborate, because we have to distin-
guish between the cases where L in (1.12) is small or large, but the techniques used remain
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similar. By, again, taking into account the actual degrees more precisely, the analysis is sim-
plified however: we, for example, do not rely on the exponential decay of the correlations.
Part (b) of this proposition is new and can be proved with similar techniques. The proof of
Proposition 1.9 is proven in a similar way as in [7].

The remainder of this paper is organized as follows. First we shall review some prelimi-
naries on Ising models in Sect. 2. Next, we shall study the tree recursion of (1.13) and prove
Proposition 1.7 in Sect. 3 and Proposition 1.8 in Sect. 4. Finally, in Sect. 5, we shall prove
Proposition 1.9. In Sect. 6 we shall study the thermodynamic quantities to prove Corol-
lary 1.6.

2 Preliminaries

The first result on ferromagnetic Ising models we will heavily rely on is the Griffiths, Kelly,
Sherman (GKS) inequality, which gives various monotonicity properties:

Lemma 2.1 (GKS inequality) Consider two Ising measures μ and μ′ on graphs G = (V ,E)

and G′ = (V ,E′), with inverse temperatures β and β ′ and external fields B and B ′, respec-
tively. If E ⊆ E′, β ≤ β ′ and 0 ≤ Bi ≤ B ′

i for all i ∈ V , then, for any U ⊆ V ,

0 ≤
〈∏

i∈U

σi

〉

μ

≤
〈∏

i∈U

σi

〉

μ′
. (2.1)

A weaker version of this inequality was first proved by Griffiths [12] and later generalized
by Kelly and Sherman [15]. The second result on ferromagnetic Ising models is an inequality
by Griffiths, Hurst and Sherman [13] which shows the concavity of the magnetization in the
external (positive) magnetic fields.

Lemma 2.2 (GHS inequality) Let β ≥ 0 and Bi ≥ 0 for all i ∈ V . Denote by

mj(B) = μ({σ : σj = +1}) − μ({σ : σj = −1}) (2.2)

the magnetization of vertex j when the external fields at the vertices are B . Then, for any
three vertices j, k, l ∈ V ,

∂2

∂Bk∂B�

mj (B) ≤ 0. (2.3)

The final preliminary observation we need is a lemma that reduces the computation of
the Ising measure on a tree to the computation of Ising measures on subtrees:

Lemma 2.3 (Pruning trees) For U a subtree of a finite tree T , let ∂U be the subset of
vertices of U that connect to a vertex in W ≡ T \ U . Denote by 〈σu〉μW,u

the magnetization
of vertex u ∈ ∂U of the Ising model on W ∪ {u}. Then, the marginal Ising measure on U ,
μT

U , is the same as the Ising measure on U with magnetic fields

B ′
u =

{
atanh(〈σu〉μW,u

), u ∈ ∂U,

Bu, u ∈ U \ ∂U.
(2.4)

The proof of this lemma follows from a direct application of the Boltzmann distribution
given in (1.1), see [7, Lemma 4.1].
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3 Tree Recursion: Proof of Proposition 1.7

To prove Proposition 1.7, we will first study the Ising model on a tree with � generations,
T (�), with either + or free boundary conditions, where the Ising models on the tree T (�)

with +/free boundary conditions are defined by the Boltzmann distributions

μ�,+(σ ) = 1

Z�,+(β,B)
exp

⎧
⎨

⎩
β

∑

(i,j)∈T (�)

σiσj +
∑

i∈T (�)

Biσi

⎫
⎬

⎭
1{σi=+1, for all i∈∂T (�)}, (3.1)

and

μ�,f (σ ) = 1

Z�,f (β,B)
exp

⎧
⎨

⎩
β

∑

(i,j)∈T (�)

σiσj +
∑

i∈T (�)

Biσi

⎫
⎬

⎭
, (3.2)

respectively, where Z�,+/f are the proper normalization factors and ∂T (�) denotes the ver-
tices in the �-th generation of T (�). In the next lemma we will show that the effect of
these boundary conditions vanishes when � → ∞. This lemma is a generalization of [7,
Lemma 4.3], where this result was proved in expectation for graphs with a finite-variance
degree distribution. This generalization is possible by taking the degrees into account more
precisely, instead of using Jensen’s inequality to replace them by average degrees. This also
simplifies the proof.

We will then show that the recursion (1.13) has a fixed point and use a coupling with the
root magnetization in trees and Lemma 3.1 to show that this fixed point does not depend on
the initial distribution h(0), thus showing that (1.13) has a unique fixed point.

Lemma 3.1 (Vanishing effect of boundary conditions) Let m�,+/f (B) denote the root mag-
netization given T (�) with external field per vertex Bi ≥ Bmin > 0 when the tree has
+/free boundary conditions. Assume that the forward degrees satisfy �i < ∞ a.s., for all
i ∈ T (� − 1). Let 0 ≤ β ≤ βmax < ∞. Then, there exists an M = M(βmax,Bmin) < ∞ such
that, a.s.,

m�,+(B) − m�,f (B) ≤ M

�
, (3.3)

for all � ≥ 1.

Remark Lemma 3.1 is extremely general. For example, it also applies to trees arising from
multitype branching processes.

Proof The lemma clearly holds for β = 0, so we assume that β > 0 in the remainder of the
proof.

Denote by m�(B,H) the root magnetization given T (�) with free boundary conditions,
when the external field on the vertices i ∈ ∂T (�) is Bi + Hi and Bi on all other vertices
i ∈ T (� − 1). Condition on the tree T (�) and assume that the tree T (�) is finite, which is
true a.s., so that we can use Lemma 2.3. Thus, for 1 ≤ k ≤ �,

mk,+(B) ≡ mk(B,∞) = mk−1(B, {β�i}), (3.4)

where �i is the forward degree of vertex i ∈ ∂T (k − 1). By the GKS inequality

mk−1(B, {β�i}) ≤ mk−1(B,∞). (3.5)
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Since the magnetic field at all vertices in ∂T (k) is at least Bmin we can write, using
Lemma 2.3 and the GKS inequality, that

mk,f (B) ≡ mk(B,0) ≥ mk−1(B, ξ{�i}), (3.6)

where

ξ = ξ(β,Bmin) = atanh(tanh(β) tanh(Bmin)). (3.7)

This inequality holds with equality when Bi = Bmin for all i ∈ ∂T (k). Using the GKS in-
equality again, we have that

mk−1(B, ξ{�i}) ≥ mk−1(B,0). (3.8)

Note that 0 ≤ ξ(β,Bmin) ≤ β . Since H �→ mk(B,H {�i}) is concave in H because of the
GHS inequality, we have that

mk−1(B,β{�i}) − mk−1(B,0) ≤ M
(
mk−1(B, ξ{�i}) − mk−1(B,0)

)
, (3.9)

where

M = M(βmax,Bmin) = sup
0<β≤βmax

β

ξ(β,Bmin)
< ∞. (3.10)

Thus, we can rewrite mk,+(B) using (3.4) and bound mk,f (B) using (3.6) and (3.8), to obtain

mk,+(B) − mk,f (B) ≤ mk−1(B,β{�i}) − mk−1(B,0). (3.11)

By (3.9), we then have that

mk,+(B) − mk,f (B) ≤ M
(
mk−1(B, ξ{�i}) − mk−1(B,0)

) ≤ M
(
mk(B,0) − mk−1(B,0)

)
,

(3.12)
where we have used (3.6) in the last inequality.

By (3.4) and (3.5), mk,+(B) is non-increasing in k and, by (3.6) and (3.8), mk,f (B) is
non-decreasing in k. Thus, by summing the inequality in (3.12) over k, we get that

�
(
m�,+(B) − m�,f (B)

) ≤
�∑

k=1

(
mk,+(B) − mk,f (B)

) ≤ M

�∑

k=1

(
mk(B,0) − mk−1(B,0)

)

= M
(
m�(B,0) − m0(B,0)

) ≤ M, (3.13)

since 0 ≤ m�/0(B,0) ≤ 1. �

We are now ready to prove Proposition 1.7.

Proof of Proposition 1.7 Condition on the tree T (ρ,∞). Then h(t) ≡ atanh(mt,f (B)) sat-
isfies the recursive distribution (1.13) because of Lemma 2.3. Since, by the GKS in-
equality, mt,f (B), and hence also h(t), are monotonically increasing in t , we have that
B = h(0) ≤ h(t) ≤ B + D0 < ∞ for all t ≥ 0, where D0 is the degree of the root. So, h(t)

converges to some limit h. Since this holds a.s. for any tree T (ρ,∞), the distribution of
h also exists and one can show that this limit is a fixed point of (1.13) (see [7, Proof of
Lemma 2.3]).
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In a similar way, h(t,+) ≡ atanh(mt,+(B)) satisfies (1.13) when starting with h(0,+) = ∞.
Then, h(t,+) is monotonically decreasing and, for t ≥ 1, B ≤ h(t) ≤ B + D0 < ∞, so h(t,+)

also converges to some limit h.
Let h be a fixed point of (1.13), condition on this h and let h(0,∗) = h. Then h(t,∗) con-

verges as above to a limit h∗ say, when applying (1.13). Note that h(0) ≤ h(0,∗) ≤ h(0,+).
Coupling so as to have the same {Kt }t≥1 while applying the recursion (1.13), this order is
preserved by the GKS inequality, so that h(t) ≤ h(t,∗) ≤ h(t,+) for all t ≥ 0. By Lemma 3.1,

| tanh(h(t)) − tanh(h(t,+))| = |mt,f (B) − mt,+(B)| → 0, for t → ∞. (3.14)

Since the above holds a.s. for any tree T (ρ,∞) and any realization of h∗, the distributions
of h,h and h∗ are equal, and, since h is a fixed point of (1.13), are all equal in distribution
to h. �

4 Dependence of ϕ on (β,B) via h∗: Proof of Proposition 1.8

We will now prove Proposition 1.8 by first bounding the dependence of ϕ on h∗ in
Lemma 4.1 and subsequently bounding the dependence of h∗ on β and B in Lemmas 4.2
and 4.3 respectively.

Lemma 4.1 (Dependence of ϕ on h∗) Assume that distribution P has strongly finite mean.
Fix B1,B2 > 0 and 0 < β1, β2 < ∞. Let h∗

1 and h∗
2 be the fixed points of (1.13) for (β1,B1)

and (β2,B2), respectively. Let ϕh∗(β,B) be defined as in (1.12) with {hi}i≥1 replaced by
i.i.d. copies of the specified h∗. Then, for some λ < ∞,

|ϕh∗
1
(β1,B1) − ϕh∗

2
(β1,B1)| ≤ λ‖ tanh(h∗

1) − tanh(h∗
2)‖τ−1

MK , (4.1)

where ‖X − Y‖MK denotes the Monge-Kantorovich-Wasserstein distance between random
variables X and Y , i.e., ‖X − Y‖MK is the infimum of E[|X̂ − Ŷ |] over all couplings (X̂, Ŷ )

of X and Y .

Proof Let Xi and Yi be i.i.d. copies of X = tanh(h∗
1) and Y = tanh(h∗

2) respectively and
also independent of L. When ‖X − Y‖MK = 0 or ‖X − Y‖MK = ∞, the statement in the
lemma clearly holds. Thus, without loss of generality, we fix γ > 1 and assume that (Xi, Yi)

are i.i.d. pairs, independent of L, that are coupled in such a way that E|Xi − Yi | ≤ γ ‖X −
Y‖MK < ∞.

Let β̂ = tanh(β1) and, for � ≥ 2,

F�(x1, . . . , x�) = log

{

eB

�∏

i=1

(1 + β̂xi) + e−B

�∏

i=1

(1 − β̂xi)

}

− 1

� − 1

∑

1≤i<j≤�

log(1+β̂xixj ),

(4.2)
and let

F1(x1, x2) = 1

2

(
log

(
eB(1 + β̂x1) + e−B(1 − β̂x1)

)

+ log
(
eB(1 + β̂x2) + e−B(1 − β̂x2)

) − log(1 + β̂x1x2)
)
. (4.3)
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Then, with L having distribution P ,

ϕh∗
1
(β1,B1) = F0 + E[FL(X1, . . . ,Xmax{2,L})] and

ϕh∗
2
(β1,B1) = F0 + E[FL(Y1, . . . , Ymax{2,L})],

(4.4)

for some constant F0 that is independent of β and B . In the remainder of the proof we
will assume that F1 is defined as in (4.2). The proof, however, also works for F1 as defined
in (4.3).

We will split the absolute difference between ϕh∗
1
(β1,B1) and ϕh∗

2
(β1,B1) into two parts

depending on whether L is small or large, i.e., for some constant θ > 0 to be chosen later
on, we split

∣
∣
∣E

[
FL(Y1, . . . , YL) − FL(X1, . . . ,XL)

]∣∣
∣

≤
∣
∣
∣E

[
(FL(Y1, . . . , YL) − FL(X1, . . . ,XL))1{L≤θ}

]∣∣
∣

+
∣
∣
∣E

[
(FL(Y1, . . . , YL) − FL(X1, . . . ,XL))1{L>θ}

]∣∣
∣. (4.5)

Note that

F�(Y1, . . . , Y�) − F�(X1, . . . ,X�)

=
∫ 1

0

d

ds
F�(sY1 + (1 − s)X1, . . . , sY� + (1 − s)X�)

∣
∣
∣
s=t

dt

=
∫ 1

0

�∑

i=1

(Yi − Xi)
∂F�

∂xi

(tY1 + (1 − t)X1, . . . , tY� + (1 − t)X�)dt

=
�∑

i=1

(Yi − Xi)

∫ 1

0

∂F�

∂xi

(tY1 + (1 − t)X1, . . . , tY� + (1 − t)X�)dt. (4.6)

As observed in [7, Corollary 6.3], ∂F�

∂xi
is uniformly bounded, so that

∣
∣
∣F�(Y1, . . . , Y�) − F�(X1, . . . ,X�)

∣
∣
∣ ≤ λ1

�∑

i=1

|Yi − Xi |, (4.7)

where λ1 is allowed to change from line to line. Hence,

∣
∣
∣E

[
(FL(Y1, . . . , YL) − FL(X1, . . . ,XL))1{L>θ}

]∣∣
∣ ≤ E

[
L∑

i=1

|Yi − Xi |c11{L>θ}]
]

≤ λ1‖X − Y‖MKE[L1{L>θ}]. (4.8)

We compute, using that L ≥ 0,
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E[L1{L>θ}] =
∞∑

x=1

P[L1{L>θ} ≥ x] =
θ+1∑

x=1

P[L1{L>θ} ≥ x] +
∞∑

x=θ+2

P[L1{L>θ} ≥ x]

=
θ+1∑

x=1

P[L ≥ θ + 1] +
∞∑

x=θ+2

P[L ≥ x] ≤ (θ + 1) · c(θ + 1)−(τ−1)

+
∞∑

x=θ+2

cx−(τ−1)

≤ λ1θ
−(τ−2), (4.9)

so that
∣
∣
∣E

[
(FL(Y1, . . . , YL) − FL(X1, . . . ,XL))1{L>θ}

]∣∣
∣ ≤ λ1‖X − Y‖MKθ−(τ−2). (4.10)

By the fundamental theorem of calculus, we can also write

F�(Y1, . . . , Y�) − F�(X1, . . . ,X�) =
�∑

i=1

�iF� +
�∑

i =j

(Yi − Xi)(Yj − Xj)f
(�)
ij , (4.11)

with

�iF� = (Yi − Xi)

∫ 1

0

∂F�

∂xi

(X1, . . . , tYi + (1 − t)Xi, . . . ,X�)dt, (4.12)

and

f
(�)
ij =

∫ 1

0

∫ t

0

∂2F�

∂xi∂xj

(sY1 + (1 − s)X1, . . . , sYi + (1 − s)Xi, . . . , sY� + (1 − s)X�)dsdt.

(4.13)
Therefore,

∣
∣
∣E

[
(FL(Y1, . . . , YL) − FL(X1, . . . ,XL))1{L≤θ}

]∣∣
∣

≤
∣
∣
∣
∣
∣
E

[
L∑

i=1

�iFL1{L≤θ}

]∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
∣
E

⎡

⎣
L∑

i =j

(Yi − Xi)(Yj − Xj)f
(L)
ij 1{L≤θ}

⎤

⎦

∣
∣
∣
∣
∣
∣
. (4.14)

Since ∂2F�

∂xi ∂xj
is also uniformly bounded [7, Corollary 6.3], we obtain

∣
∣
∣
∣
∣
∣
E

⎡

⎣
L∑

i =j

(Yi − Xi)(Yj − Xj)f
(L)
ij 1{L≤θ}

⎤

⎦

∣
∣
∣
∣
∣
∣
≤ λ2E

⎡

⎣
L∑

i =j

|Yi − Xi ||Yj − Xj |1{L≤θ}

⎤

⎦

≤ λ2‖X − Y‖2
MKE[L21{L≤θ}], (4.15)

where λ2 is allowed to change from line to line. The second moment of a non-negative
integer-valued random variable M , can be written as

E[M2] =
∞∑

x=1

(2x − 1)P[M ≥ x], (4.16)
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so that

E[L21{L≤θ}] =
∞∑

x=1

(2x − 1)P[L1{L≤θ} ≥ x] =
θ∑

x=1

(2x − 1)P[L1{L≤θ} ≥ x]

≤
θ∑

x=1

2xP[L ≥ x] ≤
θ∑

x=1

2x · cx−(τ−1) ≤ λ2θ
−(τ−3). (4.17)

We split

∣
∣
∣
∣
∣
E

[
L∑

i=1

�iFL1{L≤θ}

]∣
∣
∣
∣
∣
≤

∣
∣
∣
∣
∣
E

[
L∑

i=1

�iFL

]∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
E

[
L∑

i=1

�iFL1{L>θ}

]∣
∣
∣
∣
∣
. (4.18)

By symmetry of the functions F� with respect to their arguments, for i.i.d. (Xi, Yi) indepen-
dent of L,

E

[
L∑

i=1

�iFL

]

= E [L�1FL] = E

[

L(Y1 − X1)

∫ 1

0

∂FL

∂x1
(tY1 + (1 − t)X1,X2, . . . ,XL)dt

]

.

(4.19)
Differentiating (4.2) gives, for � ≥ 2,

∂

∂x1
F�(x1, . . . , x�) = ψ(x1, g�(x2, . . . , x�)) − 1

� − 1

�∑

j=2

ψ(x1, xj ), (4.20)

where ψ(x, y) = xy/(1 + β̂xy) and

g�(x2, . . . , x�) = tanh

⎛

⎝B +
�∑

j=2

atanh(β̂xj )

⎞

⎠ , (4.21)

while differentiating (4.3) gives

∂

∂x1
F�(x1, x2) = ψ(x1, g1) − ψ(x1, x2). (4.22)

Using that �P� = Pρ�−1, we have that, with K distributed as ρ,

E[Lψ(X1, gL(X2, . . . ,XL))] = PE[ψ(X1, gK+1(X2, . . . ,XK+1))] = PE[ψ(X1,X2)],
(4.23)

because gK+1(X2, . . . ,XK+1) is a fixed point of (1.13), so that gK+1(X2, . . . ,XK+1)
d= X2

and is independent of X1. Therefore, one can show that

E

[

L
∂FL

∂x1
(x,X2, . . . ,Xmax{2,L})

]

= 0, for all x ∈ [−1,1]. (4.24)

Since ∂FL

∂x1
is uniformly bounded, L∂FL

∂x1
is integrable, so that, by Fubini’s theorem and (4.24),
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E

[
L∑

i=1

�iFL

]

= E

[

(Y1 − X1)

∫ 1

0
E

[

L
∂FL

∂x1
(tY1 + (1 − t)X1,X2, . . . ,XL)

∣
∣
∣X1, Y1

]

dt

]

= 0. (4.25)

Furthermore, by (4.12) and the uniform boundedness of ∂F�

∂xi
,

∣
∣
∣
∣
∣
E

[
L∑

i=1

�iFL1{L>θ}

]∣
∣
∣
∣
∣
≤ E

[
L∑

i=1

|Yi − Xi |c11{L>θ}

]

≤ λ1‖X − Y‖MKθ−(τ−2). (4.26)

Therefore, we conclude that
∣
∣
∣E

[
(FL(Y1, . . . , YL) − FL(X1, . . . ,XL))1{L≤θ}

]∣∣
∣

≤ λ1‖X − Y‖MKθ−(τ−2) + λ2‖X − Y‖2
MKθ−(τ−3). (4.27)

Combining (4.10) and (4.27) and letting θ = ‖X − Y‖−1
MK yields the desired result. �

Lemma 4.2 (Dependence of h∗ on β) Fix B > 0 and 0 < β1, β2 ≤ βmax. Let h∗
β1

and h∗
β2

,
where we made the dependence of h∗ on β explicit, be the fixed points of (1.13) for (β1,B)

and (β2,B), respectively. Then, there exists a λ < ∞ such that

‖ tanh(h∗
β1

) − tanh(h∗
β2

)‖MK ≤ λ|β1 − β2|. (4.28)

Proof For a given tree T (ρ,∞) we can, as in the proof of Proposition 1.7, couple tanh(h∗
β)

to the root magnetizations m
�,f/+
β (B) such that, for all β ≥ 0 and � ≥ 0,

m
�,f

β (B) ≤ tanh(h∗
β) ≤ m

�,+
β (B), (4.29)

where we made the dependence of m�,f/+ on β explicit. Without loss of generality, we
assume that 0 < β1 ≤ β2 ≤ βmax. Then, by the GKS inequality,

| tanh(h∗
β2

)− tanh(h∗
β1

)| ≤ m
�,+
β2

(B)−m
�,f

β1
(B) = m

�,+
β2

(B)−m
�,f

β2
(B)+m

�,f

β2
(B)−m

�,f

β1
(B).

(4.30)
By Lemma 3.1, a.s.,

m
�,+
β2

(B) − m
�,f

β2
(B) ≤ M

�
, (4.31)

for some M < ∞. Since m
�,f

β (B) is non-decreasing in β by the GKS inequality,

m
�,f

β2
(B) − m

�,f

β1
(B) ≤ (β2 − β1) sup

β1≤β≤βmax

∂m�,f

∂β
. (4.32)

Letting � → ∞, it thus suffices to show that ∂m�,f /∂β is, a.s., bounded uniformly in � and
0 < β1 ≤ β ≤ βmax.

From [7, Lemma 4.6] we know that

∂

∂β
m�,f (β,B) ≤

�−1∑

k=0

Vk,�, (4.33)
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with

Vk,� =
∑

i∈∂T (k)

�i

∂

∂Bi

m�(B,0)

∣
∣
∣
B=B

. (4.34)

By Lemma 2.3 and the GHS inequality,

∂

∂Bi

m�(B,0) = ∂

∂Bi

m�−1(B,H) ≤ ∂

∂Bi

m�−1(B,0), (4.35)

for some field H , so that Vk,� is non-increasing in �. We may assume that Bi ≥ Bmin for all
i ∈ T (�) for some Bmin. Thus, also using Lemma 2.3,

Vk,� ≤ Vk,k+1 =
∑

i∈∂T (k)

�i

∂

∂Bi

mk+1(B,0)

∣
∣
∣
B=B

≤
∑

i∈∂T (k)

�i

∂

∂Bi

mk(B, ξ{�i})
∣
∣
∣
B=B

= ∂

∂H
mk(B,H {�i})

∣
∣
∣
H=ξ(β,Bmin)

, (4.36)

where ξ = ξ(β,Bmin) is defined in (3.7). By the GHS inequality this derivative is non-
increasing in H , so that, by Lemma 2.3, the above is at most

1

ξ

[
mk(B, ξ{�i}) − mk(B,0)

] ≤ 1

ξ

[
mk+1(B,0) − mk(B,0)

]
. (4.37)

Therefore,

∂

∂β
m�,f (β,B) ≤

�−1∑

k=0

Vk,� ≤ 1

ξ

�−1∑

k=0

[
mk+1(B,0) − mk(B,0)

] ≤ 1

ξ
< ∞, (4.38)

for 0 < β1 ≤ β ≤ βmax. �

Lemma 4.3 (Dependence of h∗ on B) Fix β ≥ 0 and B1,B2 ≥ Bmin > 0. Let h∗
B1

and h∗
B2

,
where we made the dependence of h∗ on B explicit, be the fixed points of (1.13) for (β,B1)

and (β,B2), respectively. Then, there exists a λ < ∞ such that

‖ tanh(h∗
B1

) − tanh(h∗
B2

)‖MK ≤ λ|B1 − B2|. (4.39)

Proof This lemma can be proved along the same lines as Lemma 4.2. Therefore, for a given
tree T (ρ,∞), we can couple tanh(h∗

B) to the root magnetizations m�,f/+(B) such that, for
all B > 0 and � ≥ 0,

m�,f (B) ≤ tanh(h∗
B) ≤ m�,+(B). (4.40)

Without loss of generality, we assume that 0 < Bmin ≤ B1 ≤ B2. Then, by the GKS inequal-
ity,

| tanh(h∗
B2

) − tanh(h∗
B1

)| ≤ m�,+(B2) − m�,f (B1)

= m�,+(B2) − m�,f (B2) + m�,f (B2) − m�,f (B1). (4.41)

By Lemma 3.1, a.s.,

m�,+(B2) − m�,f (B2) ≤ M

�
, (4.42)
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for some M < ∞. Since m�,f (B) is non-decreasing in B by the GKS inequality,

m�,f (B2) − m�,f (B1) ≤ (B2 − B1) sup
B≥Bmin>0

∂m�,f

∂B
. (4.43)

Letting � → ∞, it thus suffices to show that ∂m�,f /∂B is bounded uniformly in � and
B ≥ Bmin > 0. This follows from the GHS inequality:

sup
B≥Bmin>0

∂m�,f

∂B
≤ ∂m�,f

∂B

∣
∣
∣
∣
B=Bmin

≤ 2

Bmin

[
m�,f (Bmin) − m�,f (Bmin/2)

] ≤ 2

Bmin
< ∞.

(4.44)
�

5 Convergence of the Internal Energy: Proof of Proposition 1.9

We shall start by identifying the thermodynamic limit of the intensive internal energy:

Lemma 5.1 (From graphs to trees) Assume that the graph sequence {Gn}n≥1 is locally tree-
like with asymptotic degree distribution P , where P has finite mean, and is uniformly sparse.
Then, a.s.,

lim
n→∞

∂

∂β
ψn(β,B) = P

2
E

[〈
σ1σ2

〉

ν′
2

]
, (5.1)

where ν ′
2 is defined in (1.21).

Lemma 5.1 shall be proved in Sect. 5.1. Next, we will compute the derivative of ϕ(β,B)

with respect to β in the following lemma and show that it equals the one on the graph:

Lemma 5.2 (Tree analysis) Assume that distribution P has strongly finite mean. Then,

∂

∂β
ϕ(β,B) = P

2
E

[〈
σ1σ2

〉

ν′
2

]
, (5.2)

where ν ′
2 is defined in (1.21).

Lemma 5.2 shall be proved in Sect. 5.2. Lemmas 5.1 and 5.2 clearly imply Proposi-
tion 1.9.

5.1 From Graphs to Trees: Proof of Lemma 5.1

This lemma can be proved as in [7]. The idea is to note that

∂

∂β
ψn(β,B) = 1

n

∑

(i,j)∈En

〈
σiσj

〉

μn
= |En|

n

∑
(i,j)∈En

〈
σiσj

〉

μn

|En| . (5.3)

By the local convergence and the uniform sparsity, we have that, a.s. (see (1.10)),

lim
n→∞

|En|
n

= P/2. (5.4)
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The second term of the right hand side of (5.3) can be seen as the expectation with respect
to a uniformly chosen edge (i, j) of the correlation 〈σiσj 〉μn . For a uniformly chosen edge
(i, j), denote by B(i,j)(t) all vertices at distance from either vertex i or j at most t , and let
∂B(i,j)(t) = B(i,j)(t) \ B(i,j)(t − 1). By the GKS inequality, for any t ≥ 1,

〈
σiσj

〉f
B(i,j)(t)

≤ 〈
σiσj

〉

μn
≤ 〈

σiσj

〉+
B(i,j)(t)

, (5.5)

where 〈σiσj 〉+/f

B(i,j)(t)
is the correlation in the Ising model on B(i,j)(t) with +/free boundary

conditions on ∂B(i,j)(t).
Let T (ρ, t) be the tree formed by joining the roots, φ1 and φ2, of two branching processes

with t generations and with offspring ρ at each vertex, also at the roots. Then, taking
n → ∞, B(i,j)(t) converges to T (ρ, t), because of the local convergence of the graph se-
quence. After all, a random edge can be chosen, by first picking a vertex with probability
proportional to its degree, and then selecting a neighbor uniformly at random. Using this,
one can show (see [7, Lemma 6.4]), also using the uniform sparsity, that, for all t ≥ 1, a.s.,

lim
n→∞ E(i,j)

[〈
σiσj

〉+/f

B(i,j)(t)

]
= E

[〈
σφ1σφ2

〉+/f

T (ρ,t)

]
, (5.6)

where the first expectation is with respect to a uniformly at random chosen edge (i, j) ∈ En

and the second expectation with respect to the tree T (ρ, t). By Lemma 2.3 and Proposi-
tion 1.7,

lim
t→∞ E

[〈
σφ1σφ2

〉+/f

T (ρ,t)

]
= E

[〈
σ1σ2

〉

ν′
2

]
, (5.7)

thus proving the lemma.

5.2 Tree Analysis: Proof of Lemma 5.2

Let Xi, i ≥ 1, be i.i.d. copies of tanh(h∗), also independent of L. Then, with L having
distribution P and F� defined in (4.2) and (4.3),

ϕ(β,B) = F0 + E[FL(X1, . . . ,Xmax{2,L})], (5.8)

for some constant F0 that is independent of β and B .
From Proposition 1.8 it follows that we can assume that β is fixed in h∗ when differen-

tiating ϕ(β,B) with respect to β . Thus, taking the derivative of (5.8) and using (4.23), one
can show that

∂

∂β
ϕ(β,B) = P

2
β̂ + P

2
E

[
ψ(X1,X2)

] = P

2
E

[

β̂ + X1X2

1 + β̂X1X2

]

= P

2
E

[
β̂ + X1X2

1 + β̂X1X2

]

.

(5.9)
Since, with h1, h2 i.i.d. copies of h∗,

E

[
β̂ + X1X2

1 + β̂X1X2

]

= E

[
tanh(β) + tanh(h1) tanh(h2)

1 + tanh(β) tanh(h1) tanh(h2)

]

= E

[
eβ+h1+h2 − e−β−h1+h2 − e−β+h1−h2 + eβ−h1−h2

eβ+h1+h2 + e−β−h1+h2 + e−β+h1−h2 + eβ−h1−h2

]

= E

[〈
σ1σ2

〉

ν′
2

]
,

(5.10)

where ν ′
2 is given in (1.21), we have proved the lemma.
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6 Thermodynamic Quantities: Proofs of Theorem 1.5 and Corollary 1.6

To prove the statements in Theorem 1.5 we need to show that we can interchange the
limit of n → ∞ and the derivatives of the finite volume pressure. We can do this using
the monotonicity properties of the Ising model and the following lemma:

Lemma 6.1 (Interchanging limits and derivatives) Let {fn(x)}n≥1 be a sequence of functions
that are twice differentiable in x. Assume that

(i) limn→∞ fn(x) = f (x) for some function x �→ f (x) which is differentiable in x;
(ii) d

dx
fn(x) is monotone in [x − h,x + h] for all n ≥ 1 and some h > 0.

Then,

lim
n→∞

d

dx
fn(x) = d

dx
f (x). (6.1)

Proof First, suppose that d2

dx′2 fn(x
′) ≥ 0 for all x ′ ∈ [x −h,x +h], all n ≥ 1 and some h > 0.

Then, for h > 0 sufficiently small and all n ≥ 1,

fn(x − h) − fn(x)

−h
≤ d

dx
fn(x) ≤ fn(x + h) − fn(x)

h
, (6.2)

and taking n → ∞ we get, by assumption (i), that

f (x − h) − f (x)

−h
≤ lim inf

n→∞
d

dx
fn(x) ≤ lim sup

n→∞
d

dx
fn(x) ≤ f (x + h) − f (x)

h
. (6.3)

Taking h ↓ 0 now proves the result. The proof for d2

dx2 fn(x) ≤ 0 is similar. �

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5 We apply Lemma 6.1 with the role of fn taken by B �→ ψn(β,B),
since

Mn(β,B) = 1

n

∑

i∈[n]
〈σi〉μn

= ∂

∂B
ψn(β,B), (6.4)

and limn→∞ ψn(β,B) = ϕ(β,B) by Theorem 1.4 and B �→ Mn(β,B) is non-decreasing by
the GKS inequality. Therefore,

lim
n→∞Mn(β,B) = lim

n→∞
∂

∂B
ψn(β,B) = ∂

∂B
ϕ(β,B), (6.5)

which proves part (a).
Part (b) follows immediately from Proposition 1.9 and the observation that

Un = − 1

n

∑

(i,j)∈En

〈
σiσj

〉

μn
= − ∂

∂β
ψn(β,B). (6.6)

Part (c) is proved using Lemma 6.1 by combining part (a) of this theorem and that
B �→ ∂

∂B
Mn(β,B) is non-increasing by the GHS inequality. �
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We can now prove each of the statements in Corollary 1.6 by taking the proper derivative
of ϕ(β,B).

Proof of Corollary 1.6 It follows from Theorem 1.5(a) that the magnetization per vertex is
given by

M(β,B) = ∂

∂B
ϕ(β,B). (6.7)

Similar to the proof of Lemma 5.2, we can ignore the dependence of h∗ on B when differ-
entiating ϕ(β,B) with respect to B by Proposition 1.8. Therefore, with β̂ = tanh(β),

∂

∂B
ϕ(β,B) = ∂

∂B
E

[

log

(

eB

L∏

i=1

{1 + tanh(β) tanh(hi)} + e−B

L∏

i=1

{1 − tanh(β) tanh(hi)}
)]

= E

[
eB

∏L

i=1(1 + β̂ tanh(hi)) − e−B
∏L

i=1(1 − β̂ tanh(hi))

eB
∏L

i=1(1 + β̂ tanh(hi)) + e−B
∏L

i=1(1 − β̂ tanh(hi))

]

= E

⎡

⎣
eB

∏L

i=1

( 1+β̂ tanh(hi )

1−β̂ tanh(hi )

)1/2 − e−B
∏L

i=1

( 1−β̂ tanh(hi )

1+β̂ tanh(hi )

)1/2

eB
∏L

i=1

( 1+β̂ tanh(hi )

1−β̂ tanh(hi )

)1/2 + e−B
∏L

i=1

( 1−β̂ tanh(hi )

1+β̂ tanh(hi )

)1/2

⎤

⎦ , (6.8)

where L has distribution P and {hi}i≥1’s are i.i.d. copies of h∗, independent of L. Using that
atanh(x) = 1

2 log( 1+x
1−x

) the above simplifies to

E

[
eB

∏L

i=1 eatanh(β̂ tanh(hi )) − e−B
∏L

i=1 e−atanh(β̂ tanh(hi ))

eB
∏L

i=1 eatanh(β̂ tanh(hi )) + e−B
∏L

i=1 e−atanh(β̂ tanh(hi ))

]

= E

[

tanh

(

B +
L∑

i=1

atanh(β̂ tanh(hi))

)]

. (6.9)

By Lemma 2.3, this indeed equals E[〈σ0〉νL+1 ], where νL+1 is given in (1.18), which proves
part (a).

Part (b) immediately follows from Theorem 1.5(b) and Lemma 5.2. �
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